Journal of Statisticians Union (JASU)........c.ceeeveiieiiieinnnnnn Vo5.No3.15/9/2021

Data de-noise for Discriminant Analysis by
using Multivariate Wavelets
(Simulation with practical application)

Prof. Dr. Taha Hussein Ali, Department of Statistics, College of
Administration and Economics, Salahaddin University, Erbil,
Kurdistan Region, Iraq. Email: taha.ali@su.edu.krd
Asst. Prof. Dr.Nazeera Sedeek Kareem, Department of Statistics,
College of Administration and Economics, Salahaddin University,
Erbil, Kurdistan Region, Iraq. nazeera.kareem@su.ed.krd
Lect. Awaz shahab mohammad, Department of Mathematics, College
of Education, Salahaddin University, Erbil, Kurdistan Region, Iraq.

Awaz.shahab82@yahoo.com

ABSTRACT

In this paper, we suggest using the multivariate wavelet analysis in higher
dimensional space (Symlet, Daubechies' least-asymmetric wavelets) with
soft thresholding to de-noise of the data (Shrinkage) before use it in the
Discriminant Analysis to obtain more accurate and reliable results by
comparing it with the Discriminant analysis used on data before de-noise.
And to know the effect of de-noise from data (proposed method) on
Discriminant analysis results by simulating random data with normal
distribution repeated 1000 times for different combinations of number of
variables and sample sizes and real data represent leukemia patients
taken from the Nanakele Hospital in Erbil. We analyzed the data
depending on MATLAB Language and statistics program (SPSS). One of
the most important conclusions reached by the researcher that use
proposed method led to the separation between the two groups better than
before de-noise (classical method) and this mean that data were classified
for proposed method better than classical method.

Keywords: Discriminant analysis, Classification, multivariate wavelet,
Shrinkage, Minimax, soft thresholding, Symlet Wavelets and de-noise.
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1: Introduction:

Multivariate wavelet denoising methodology is used to extract data of
distinct characteristics, which are modeled further incorporating the
multivariate framework. De-noising becomes a necessary step prior to
analysis data. Multivariate wavelet shrinkage methods are particularly
well suited for such de-noising works because they can yield a dispersed
representation of the data. There are several reasons why multivariate
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wavelet shrinkage can be used for parameter estimation. (Stankovic et al.,
2013), The main reasons are that wavelet shrinkage estimators are
Minimax for a wide range of loss functions and for general function
classes, practical and fast, adaptable to spatial and frequency in
homogeneities, readily extendable to multivariate, applicable to various
other problems such as density estimation and inverse problems. And
which can be used to treat noise in the data.

On the other hand, Discriminant analysis is used to description of group
separation in the dependent variable, in which linear functions of the
variables (Discriminant functions) are used to describe or elucidate the
differences between two or more groups in the dependent variable. The
aims of descriptive Discriminant analysis include identifying the relative
contribution of the p independent variables to separation of the groups in
the dependent variable and finding the optimal plane on which the points
can be projected to best illustrate the configuration of the groups. This
analysis is also used to allocation (or prediction) of observations to
groups in the dependent variable, in which linear or quadratic functions of
the wvariables (classification functions) are employed to assign an
individual sampling unit to one of the groups. The measured values in the
observation vector for an individual or object are evaluated by the
classification functions to find the group to which the individual most
likely belongs.

2: Methodology:

This section introduces some concepts about multivariate wavelet (MW)
and Discriminant Analysis:

2.1: Multivariate Wavelet Denoising (MWD):

Recently research interests have focused on using the wavelet de-noising
techniques in the univariate case, but fewer attentions on the de-noising
of multivariate data. The basic procedures of (MWD) method is as
follows: (Kaijian et al., 2012)

I- The data into different scales using MW transform. The coefficients
would include approximation coefficients as well as horizontal and
vertical directions.

2- For approximation and direction coefficients at each direction, the
threshold i1s chosen specifically at different scales for different directions
and the MW coefficients are processed by either suppression or
shrinkage.

3- Using the de-noised MW coefficients and the scale chosen, the
processed wavelet coefficients are reconstructed into the consolidated de-
noised data using MW synthesis.
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MWD problems deal with models of the form:
X, =A, +e, (1)
Where the observation X is p-dimensional, A is the deterministic signal to
be recovered, and e is a spatially correlated noise signal. This kind of
model is well suited for situations for which such additive, spatially
correlated noise is realistic. In the multivariate setting, given the
multivariate variables X, the de-noising algorithm assumes that it consists
of both deterministic data D and undesirable noises @ . Applying the MW
analysis, (Ahrabian et al., 2015), this relationship is defined as in (2).
O=vX=vD+vw - (2)
Where v i1s an N x N orthonormal matrix, o is the N dimensional vector
of MW transform coefficients 0, :/=0,---, N 1.

The soft thresholding is example of shrinkage rules. After you have
determined your threshold, you have to decide how to apply that
threshold to your data. The simplest scheme is hard thresholding. Let T
denote the threshold and x your data. The soft thresholding is

X—T; X>T
rx)=<s0 ; |X/=71 - (3)

X+T; X<-T
Minimax threshold is one of the commonly used thresholds; the minimax
threshold is defined as threshold § which minimizes the Amount (Kaijian
etal., 2012):
: R;(0)
e Sgp{nl +mjn(492,1)} @)
Where R;(0)=E(1;(0)-0)*, O~ N(6,1)
On the other hand it will be explained wavelets used in the search, as
follows:
Symlet Wavelets are also known as Daubechies' least-asymmetric
wavelets. The symlets are more symmetric than the Extremal phase
wavelets (Aminghafaria et al., 2006). N is the number of vanishing
moments. These filters are also referred to in the literature by the number
of filter taps, which is 2N. And this wavelet is characterized by properties
near symmetric, orthogonal and biorthogonal.
Decompose data using multivariate discrete wavelet transformation
(MDWT), choose MW and number of decomposition levels and compute
MDWT =W.X - (5)
Perform thresholding in the wavelet domain. (Matz et al., 2009), Shrink
coefficients by thresholding (hard or soft) and symbolizes it %, and
reconstruct the data from thresholded DWT coefficients, using the
following formula:
x=w"X -~ (6)
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2.2: Discriminant Analysis:

The objective of the discriminatory analysis is to obtain a model to
predict a one qualitative variable from one or more independent
variable(s). The dependent variable consists of two groups or
classifications, like, normal versus abnormal blood pressure, non
defaulting loan versus defaulting, patient versus not sick (for a particular
disease) etc. Discriminant analysis depends on equation as linear
combination of the independent variables which is discriminatory the best
separation between groups in the dependent variable. This equation
(linear combination) is known as the Discriminant function. The weights
assigned to each independent variable are corrected for the inter-
correlations among all the variables. The weights are Discriminant
coefficients, (Anderson, 2003).

The Discriminant equation:

Y=8+BX+B X, ..+ B, X, +& o (7)

Where Y is a qualitative variable formed by the linear combination as
dependent variable, X,, X,, ..., X, are the p independent variables, 5,

B> B, ..., B, are the weights (Discriminant coefficients) and ¢ is the

error term (Krieng, 2012). The aim Discriminant analysis is to test if the
classification of groups in a variable Y depends on at least one of the
independent variables. In terms of hypothesis, it can be written as:

H,:B =0, for i =1, 2 .., p Versus H,:p, =0 for at least one i.

Assumptions:
1. The variablesX,, X,, ..., X, are linearity independent of each other

(there is no multi-collinearity).

2. Twice the number of independent variables does not exceed the
sample size.

3. Groups are mutually exclusive and group sizes are not much
different.

4. The variance-covariance matrices of the independent variables are
homogeneous within each group of the dependent variable.

5. Residuals (error term) are randomly distributed.

6. The wvariables of independent follow a multivariate normal
distribution, for purposes of significance testing.

There are several purposes for Discriminant analysis:

1. To investigate differences among groups of dependent variable.

2. To determine the most parsimonious way to distinguish among
groups.

3. To discard variables which are little related to distinguish the group
from another.
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4. To classify cases into groups.

5. To test theory by observing whether cases are classified as predicted.
Some basic concepts of Discriminant analysis:

Linear Discriminant function:

The number of computed functions equals the number of groups in
dependent variable minus one. This means that two groups have one
function, while three groups have two functions, and so on. Each
Discriminant function is a dimension which differentiates a case into
groups in the dependent variable based on its values on the independent
variables. The linear discrimination function can be based on a random
sample as follows (Afifi et al., 2012):

Y=B8+BX+5X,+...+f,X, - (8)

The Discriminant function coefficients estimated (f,,4,,..., ﬁp) are

partial coefficients that reflect the unique contribution of each
independent variable to the classification of the groups in the dependent
variable. We then wish to find the vector 4 that maximizes the square

standardized and we get it from the following formula:
B=s5,X -X,) = 9)
WhereS;; represent the pooled variance matrix, X, and X,are mean

vectors of the independent variables for the first and second groups,
respectively.

Group Centroid:

Group Centroid represents the mean Discriminant scores for each group
in the dependent variable for the Discriminant function. The Centroid is a
one-dimensional space, one center for each group (Durvaux and
Standaert, 2016). By connecting the Centroid a canonical plot can be
formed depicting a Discriminant function space and has cut off-point
which separate the two groups with the aim of classifying a specific item
into the group to which it belongs, which is based on the following
formula:

cr.=12(%,-X,) 5,I(X, ~X.,) - (10)

Eigen value:

Eigen value is a ratio between the explained and unexplained variation of
the model. For a good model the Eigen value must be greater than one.
The bigger the Eigen value, the stronger is the discriminating ability of
the function. It can be computed as follows:

S o
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Where SSH(z) and SSE(z) are the between and within sums of squares for

z which represent Discriminant scores for each group in the dependent
variable.

Canonical correlation:

The canonical correlation is a measure of the association between the
groups in the dependent variable and the Discriminant function. A high
value implies a high level of association between the two and vice-versa
(Cagli et al., 2017).

Walk's Lambda:

The Walk's Lambda (A) is used to test the significance (importance) of
the Discriminant function. Mathematically, it is unexplained variation or
one minus the explained variation, and the value ranges from zero to one.
When the value lambda for a function is small, the function is significant
(unlike the F-statistics in linear regression). It can be computed as follows
(Rencher, 2002):

12
= m (12)

The (pxp) matrix H has a between sum of squares on the diagonal for
each of the p independent variables. Off-diagonal elements are analogous
sums of products for each pair of variables. Assuming there are no multi-
collinearity in the independent variables, the (pxp) matrix £ has a within
sum of squares (error) for each independent variable on the diagonal, with
analogous sums of products off-diagonal.

Classification matrix:

The classification matrix is a cross tabulation of the observed and
predicted memberships. (Rencher, 2002), the values in the diagonal must
be high and the values off the diagonal must be close to zero for a good
prediction. The results can be conveniently displayed in a classification
table or confusion matrix.

The group-1 contains 72, observations, ,,are correctly classified into

group-1, andn,,are misclassified into group-2, wheren =n,+n,,.
Similarly, the group-2 contains 72, observations, n,, are correctly classified
into group-2, and n,,are misclassified into group-1, where n, =n,, +n,,,
thus

Apparent error rate = Ty ¥ 1y o (13)
n, + n,

Similarly, we can compute
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. +
Apparent correct classification rate = —1~ 22 . (14)
n, + n,

Box's M:

The Box's M tests the assumption of homogeneity of variance-covariance
matrices in the groups. A big Box's M indicated by a small p-value
indicates do not provide of this assumption. However, when the sample
size is big, Box’s M is usually large. The natural logarithm of the
variance-covariance matrices for the groups is compared. Box's M value

for two groups can be computed as follows:
(”1—1)/2 |S (”‘2—1)/2
1~2

\Sp,\,-_zl(""‘”/z

Where S, is the variance-covariance matrix of the ith group.

M:'S1

(15)

2.3: Proposed Method:

The proposed method relies on de-noise of the data for all the
independent variables together by using MW before performing
discriminate analysis. De-noise of data depending on multivariate Symlet
wavelet and get the MDWT then involve the thresholding and estimation
levels it using Minimax method to obtain a modified multivariate
(MMDWT), and taking its inverse as in formula (6), we get on de-noise
data (IMMDW) which will be thex, where x=[%, %, --- %,] and by

compensating in the formula (8) we get the following:

?w Z:é()w +:élwfcl +:ézwfcz +...+ﬁpw52p (16)

The Discriminant function coefficients estimated j3,,, 4,.,,.. ., ﬂp are partial
coefficients that reflect the unique contribution of each independent

variable after de-noise to the classification of the groups in the dependent
variable. We then wish to find the vector j that maximizes the square

standardized and we get it from the following formula:
B, =X, -X.,) e 17)
Where S,

i Tepresent the pooled variance matrix ¥, X,, and X, are mean

vectors of the independent variables after de-noise for the first and second
groups, respectively. The following diagram shows the proposed method:
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Symiet wavelst Minimax threshold

Data

All independent variables MDWT "~ MMDWT

IMMDWT

:

De-noise data

Discriminant analysis for data after de-noise

Discriminant analysis for data before de-noise

The comparative

Diagram (1): Proposed method to de-noise of data with discriminate
analysis

3. Simulation Study:

In this section, a comprehensive simulation study was conducted to
evaluate the performance of the proposed method (depending on
diagram-1), which denoted by Prop., and to compare its performance with
classical method (Class.) in selection the separation between the two
groups (or classification), the independent variables (p = 3, 4 and 5) for
sample size ( n = 30 and 50) are generated by x=u+T'z, where T
represents Cholesky factorization matrix for variance covariance matrix
> (for different selected values) and z are multivariate standard normal
random numbers, x values are generated for group-1 (y = 0) and for
group-2 (y = 1) in which g #u, and £, #%,, , MATLAB and SPSS were

used in data analysis and the original and de-noise data for the first

9-
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simulation experiment (3-variables for two groups) were illustrated in the
following figure:

Signals
T

40 |- \ —

1 '| I i I i
m:‘ I 1 If\ﬁ I; ﬂ f \ HI?

1
A

60

Observations

Figure (1): The original (red line) and de-noise data (blue line)
The main results for Discriminant analysis of the first simulation
experiment were summarized in the following table:

-10-
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Table (1): The main results for Discriminant analysis of the first
simulation experiment

No. of independent variahles
4 )
Sammple size 30 i0 | ]l l 0
Method Class. | Prop. | Class. | Prop. | Class. | Prop. | Class. | Prop. | Class. | Prop. | Class | Prop
No. of Sig. variables L %4 x| % 85|12 ¥ 3 3/4 4
Sig. model-F 1389 20008 495 3334|3125 3474|5361 8604|2005 3922|6834 11904
Std. Error of the Estimate | 0392 0324 | 0383 0357 | 0286 02780284 0239|0274 0243|040 0190
)& 0427 0609 | 0438 0510 | 0701 0716|0693 078410729 0784| 0.784 0.864
Eigen value for function | 0.744 1333 | 0780 1042 | 2345 1326|2257 3623|2690 3631|3635 633
Canonicel Comelation | 0.633 0778 | 0.662 0.714 | 0837 0.846 | 0832 0.883 | 0854 0885|0886 0929
Wilks' Lambda 0373 0391 | 0562 0490 0299 02840307 0216|0271 0216|0216 0.136
Box's M 1643 4303 | 1735 15040) 3320 33.17|3427 3867 8773 9435|1408 12607
Classification Results- | 817 933 | 83.0 860 | %00 933|950 970|917 967|970 990
Original-Y
Clessification Results- | 800 900 | 820 840 | %00 933 | 9%0 %0 %0 93| %0 980
Cross-validated-%

Table (1) shows that the proposed method is better than the classical
method of the first simulation experiment, for a combination of these
different values of p and n the generated data is repeated 1000 times and
calculate the average of Classification results- Original-% and Cross-
validated-% as in the following table:

Table (2): Average of Classification results- Original-% and Cross-

No. of
variables

validated-%

Method

Average

Classification

Average

Classification

Results-

Original-%

Results- Cross-

validated-%

78.60

86.26

76.34
83.66

83.00

86.80

81.60
85.80

91.66

95.66

91.34
94.34

94.40

97.20

93.20
96.60

96.34

98.66

95.34
96.66

96.80

97.60

95.80
97.40
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Table (2) shows that the average Classification Results- Original-% and
Classification Results- Cross-validated-% for proposed method is better
than the classical method (for different values of p and n) from generating
and repeating data for 1000 times.

4: Application of real data:

The proposed and classical method will be used based on the
proposed diagram (1) and the comparison of their efficiency by applying
on sample of leukemia patients taken from the Nanakeli Hospital in Erbil.
Leukemia is a type of cancer that occurs in tissues responsible for the
production of blood cells, including bone marrow and lymphatic system.
This type of cancer usually begins in white blood cells. The study sample
included two groups where the group-1 consisted of 24 patients with
leukemia, the group-2 consisted of 24 patients with non-leukemia patient,
which represents the dependent variable (leukemia=0 and non-
leukemia=1).The independent variables: Age represents the age of the
patient, and Mch represents the Mean corpuscular hemoglobin, Mcv
represents the Mean corpuscular volume and Esr represents the
Erythrocyte sedimentation rate test. The noise of the data (4-independent
variables) will be reduced based on the MW with the soft threshold and
estimation levels it using minimax method.

Investigating Multivariate Normality:
The independent variables will be tested whether they have a normal
multivariate distribution or not through the use of non parametric test
(Kolmogorov-Smirnov) and parametric test > under the significance
level (1%) by using Easy Fit program. The test results for classical
method are summarized in the following table:

Table (3): Test of Normali

Variables Classical method Result
of study S. Chi-Squared
Statistic Critical | Statistic p Critical
Value value | Value
Age 0.1496 0.2306 | 6.3667 | 0.2722 | 15.086 | Normal
0.0885 0.2306 | 2.0028 | 0.5718 | 11.345 | Normal
0.1046 0.2306 | 0.7299 | 0.6942 | 9.2103 | Normal
0.1336 0.2306 | 2.7132 | 0.4380 | 11.345 | Normal
Proposed method
0.0660 0.2306 | 1.0283 | 0.9055 | 13.277 | Normal
0.1275 0.2306 | 9.6350 | 0.0471 | 13.277 | Normal
0.1242 0.2306 | 1.5336 | 0.6746 | 11.345 | Normal
0.1454 0.2306 | 1.4551 |0.6927 | 11.345 | Normal

-12-
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Through a table (4) note that all study variables for classical and proposed
method have a normal distribution because p-values for both tests are less
than 1%.
To detect outlier values in the following study model:

Y =By + B, (Age)+ B, (Mch)+ . (Mev)+ 3, (Esr)+ &
The values of Mahalanobis Distance were calculated in table (I) and table
(II), (in appendix) for classical and proposed method respectively. For 4
degree of freedom and @ =0.01, y* =13.28 there is one value Mahalanobis
Distance for proposed method greater than 13.28, so it is considered
outlier.

Multiple linear regression:
To test if the classification of groups in a variable Y depends on at least
one of the independent variables, we must to test significantly the impact
hypothesis, and estimate parameters of multiple linear regression with the
some criteria (for classical method) as in the following table:
Table (4): Multiple linear regression for classical method

Model Coefficients of t ig. F  Std. Error of

Regression the Estimate
(Constant 1.878 3.071 0.004 22302  0.3013
)

Age -0.013 -3.937 0.000 1.005 Sig. R’

Mch -0.017 -1.450 0.154 1.073 0.000 0.675
Mcv 0.001 0.147 0.884 1.075
Esr -0.016 -8.295 0.000 1.019

For classical method, the F-test is highly significant (p-value equal to
zero), thus we can assume that the model explains a significant amount of
the variance with the R*> = 0 .675, this means that the multiple linear
regression explains 67.5% of the variance in the data. Also, the "Std.
Error of the Estimate" is the standard deviation of the residuals and
measures the efficiency of the estimated model and whenever it's small it
indicates the efficiency of the estimated model and it is equal to 0.3013.
The information in the table above also allows us to check for multi-
collinearity, VIF less than 3 for all variables; this means that there is no
multi-collinearity problem. We can also see that only Age and Esr
variables have highly significant impact on the dependent variable
(because the p-values less than 0.01).

-13-
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Table (5): Multiple linear regression for proposed method

Model Coefficients of t Sig.  VIF F  Std. Error of
Regression the Estimate

(Constant) 1.626 2.306 0.026 28.955  0.2749
Age -0.006 -1.568 0.124 1.247 Sig. R’

Mch -0.013 -0.871 0.389 1.135 0.000 0.729
Mcv 0.002 0.222 0.825 1.162
Esr -0.022 -8.851 0.000 1.225

For proposed method, the F-test is highly significant (p-value equal
to zero), thus we can assume that the model explains a significant amount
of the variance with the R* = 0 .729, this means that the multiple linear
regression explains 72.9% of the variance in the data and it's greater than
67.5% for classical method. Also the standard deviation of the residuals
equal to 0.2749 and it's less than 0.3013 for classical method, this means
that this model is better than before. VIF less than 3 for all variables; this
means that there is no multi-collinearity problem. We can also see that
only Esr variable has highly significant impact on the dependent variable
(because the p-values less than 0.01).

Tests of Equality of Group Means:
Table (6): Tests of Equality of Group Means

Classical method Proposed method
Wilks'
Wilks' Lambda F Lambda K

age .886 5939 . 76 13.275
Mch 978 1.040 . 988 558
Mcv .997 A53 . 994 269
Esr 453 55.529 . 292 111.597

Test of equality of means (classical method), the p-value for Esr variable
is less than 0.01. Thus there is a significant difference in Esr between the
group-1 and 2, but there is no a significant difference in Age, Mch and
Mcv variables between the group-1 and 2.

For proposed method the p-values for both Age and Esr variables are less
than 0.01. Thus, there are a significant differences in Age and Esr
between the group-1 and 2, but there is no a significant difference in Mch
and Mcv variables between the group-1 and 2.

-14-
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Box's Test of Equality of Covariance Matrices:
Table (7): Log Determinants and Box's Test of Equality of
Covariance Matrices

Classical method Proposed method

Ran
k Log Determinant| Rank Log Determinant

Group-1 4 17.358 4 14.687

Group-2 4 15.175 4 13.680

Group

Pooled within-groups 4 16.904 4 14.426
Test Results Test Results
Box's M 29.320 11.138
F-Approx. 2.655 1.009
Sig. .003 0.433

For classical method note that p-value for Box’s M test is less than 0.01.
Thus, inequality of variance-covariance matrix can be assumed. But for
proposed method the p-value for Box’s M is greater than 0.01. Thus,
equality of variance-covariance matrix can be assumed. The log
determinant values are quite close for both classical and proposed
method. But all log determinants for proposed method less than
corresponding to them classical method.

Summary of Canonical Discriminant Functions:

Table (8): Eigen values and Wilks' Lambda
Classical method Proposed method

Canonical Canonical
Function FEigen value Correlation  [Eigen value Correlation

1 2.075 0.821 2.694 0.854

Test of Wilks' Chi- Sig. Chi- Sig.
Function(s) Lambda square Wilks' Lambda square

1 325 49.420 .000 0.271 57.489 0.000

There are two groups (classical method). Therefore number of
function = 1. The Eigen value is 2.075 (>1). Canonical correlation,
r, =0.821(>0.35). Wilks' Lambda = 0.325, p-value = 0.000 (<0.01). Thus,

the Function 1 explains the variation well. For proposed method, the
Eigen value is 2.694(>1) and its greater than (2.075) for classical method.
Therefore, this function is the strongest and has a better discriminating
ability than the discriminate function of classical method. Canonical
correlation, », = 0.854(> 0.35)and its greater than canonical correlation for

classical method. Wilks' Lambda = 0.271, p-value = 0.000(<0.01). Thus,
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the Function 1 explains the variation well and it's greater than explain the
variation for classical method.
The function:

Table (9): The function

Classical method Proposed method

Function
Coefficients

Standardized
Function
Coefficients

Function
Coefficients

Standardized
Function
Coefficients

age 0.053 0.690 0.028 0.276
Mch 0.073 0.276 0.058 0.165

Mcv -0.004 -0.028 -0.008 -0.043
Esr 0.067 1.046 0.098 0.945
(Constant) -5.758 -4.959

Table (10) for classical and proposed method (respectively) show
the Correlation between Esr, age, Mch, Mcv and Y and have the models:

Y =-5.758 + 0.053(age) + 0.073(Mch) - 0.004(Mcv) + 0.067(Esr)

Y =-4.959 + 0.028(age) + 0.058(Mch) - 0.089(Mcv) + 0.198(Esr)
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Centroid Classification Statistics
Table (10): Centroid Classification Statistics
Classical method

Proposed method

Classification Function Group Group
CUieent Group-1 Group-2 Group-1 Group-2
age 0.515 0.367 0.684 0.594
Mch 1.595 1.390 1.894 1.707
Mev 1.648 1.660 2.716 2741
Esr 0.444 0.256 0.514 0.198
(Constant) -115.237 -98.999 -169.677 -153.741
Functions at Group Centroids Functions at Group Centroids
Group Function Group Function
Group-1 1.410 Group-1 1.607
Group-2 -1.410 Group-2 -1.607
Classification Results Classification Results
Predicted Group Predicted Group Membership
Membership
Group-1 | Group-2 Group-1 Group-2 | Total
Original Count 22 2 24 0 24
2 22 2 22 24
% 91.7 83 100 .0 100
83 91.7 83 91.7 100
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Cross-validated  Count 20 4 24 0 24
3 21 4 20 24

% 83.3 16.7 100 0 100

12.3 87.5 16.7 83.3 100

For classical method, 91.7% of original grouped cases correctly
classified (8.3% incorrect), 85.4% of cross-validated grouped cases
correctly classified (14.6% incorrect) as in the table-I (appendix).
Functions at Group Centroids between (-1. 41) and (1. 41), the mid point
is zero. For proposed method, 95.85% of original grouped cases correctly
classified (4.15% incorrect), 91.65% of cross-validated grouped cases
correctly classified (8.35% incorrect) as in the table-II (appendix).
Functions at Group Centroids between (-1.607) and (1.607), the mid
point is zero. The following figures shows:

Discriminant scores

I
ok b RN A e 2 wow koMW

1 I 1 I I
] L=t 10 15 20
Observations

Figure (2): Discriminant Scores for classical method
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Figure (3): Discriminant Scores for proposed method
Discrimination function for proposed method, classified data is
better than classical method. The following figure shows:
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Blue star : for classical method
L, * Red star :for proposed method

Discriminant scores
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Figure (4): Discriminant Scores for data before and after de-noise
Figure (4) show that Discriminant Scores for proposed method are
more separate between the two groups from classical method.
5. Conclusion:
Depending on the simulation study and real data, we conclude the
following:
1. The use of multivariate wavelets in reducing the noise of data (de-
noise) and then estimate the discriminate function (proposed method) led
to the separation between the two groups better than before de-noise
(classical method).

2. According to the first conclusion, the simulation and real data were
classified for proposed method better than classical method.
3. For simulation study, there are significant differences in the no. of

variables between the group-1 and 2 of the proposed method equal to or
greater than classical method.

4, The variances, total and general variance of data for proposed
method are less than classical method, which leads to more accurate
estimates of the classification function and stronger tests.
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5. For real data, study variables have a multivariate normal
distribution for all data proposed and classical method.

6. For real data, there is one value Mahalanobis Distance for proposed
method can be considered outlier.

7. The discriminate function for real data of the proposed method
explains the variation well by 85.4% and it's greater than explain the
variation for classical method (82.16%).

6. Recommendations:

1. The researcher recommends the use of multivariate wavelet in the
treatment of noise data before estimating the discrimination function
(proposed method).

2. Use other types of wavelets and compare them to get the best
wavelet that treatments the noise of data.

3. Use of other threshold types and other methods for estimating the
threshold level with wavelets and comparing them after estimating the
discriminating function.
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